首页> 外文OA文献 >Additive manufacturing methods and materials for electrokinetic systems
【2h】

Additive manufacturing methods and materials for electrokinetic systems

机译:电动系统的增材制造方法和材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fabrication of miniaturized devices is usually time-consuming, costly, and the materials commonly used limit the structures that are possible to create. The techniques most often used to make microsystems involve multiple steps, where each step takes considerable time, and if only a few systems are to be made, the price per device becomes excessive. This thesis describes how a simple syringebased 3D-printer, in combination with an appropriate choice of materials, can reduce the delay between design and prototype and simplify fabrication of microsystems. This thesis suggest two types of materials that we propose be used in combination with 3D-printing to further develop microsystems for biology and biochemistry. Analytical applications in biology and biochemistry often contain electrodes, such as in gel electrophoresis. Faradaic (electrochemical) reactions have to occur at the metal electrodes to allow electron-to-ion transduction through an electrolyte-based system to drive a current when a potential is applied to the electrodes in an electrolyte-based system. These electrochemical reactions at the electrodes, such as water electrolysis, are usually problematic when miniaturizing devices and analytical systems. An alternative to metal electrodes can be electrochemicallyactive conducting polymers, e.g. poly(3,4-ethylenedioxythiophene) (PEDOT), which can be used to reduce electrolysis when driving a current through water-based systems. Paper 1 describes gel electrophoresis where the platinum electrodes were replaced with the conductive polymer PEDOT, without affecting the separation. Manufacturing and prototyping of microsystems can be simplified by using 3Dprinting in combination with a sacrificial material. A sacrificial template material can further simplify bottom-up manufacturing of more complicated forms such as protruding and overhanging structures. We showed in paper 2 that polyethylene glycol (PEG), in combination with a carbonate-based plasticizer, functions well as a 3D-printable sacrificial template material. PEG2000 with between 20 wt% and 30 wt% ethylene carbonate or propylene carbonate has properties advantageous for 3D-printing, such as shear-thinning rheology, mechanical and chemical stability, and easy dissolution in water.
机译:小型化装置的制造通常是耗时,昂贵的,并且常用的材料限制了可能产生的结构。最常用于制造微系统的技术涉及多个步骤,其中每个步骤都花费相当多的时间,如果仅制造几个系统,则每个设备的价格就会过高。本文介绍了一种简单的基于注射器的3D打印机,结合适当的材料选择,如何减少设计和原型之间的延迟,并简化微系统的制造。本文提出了我们建议与3D打印结合使用的两种材料,以进一步开发用于生物学和生物化学的微系统。在生物学和生物化学中的分析应用通常包含电极,例如在凝胶电泳中。法拉第(电化学)反应必须在金属电极上发生,以允许在基于电解质的系统中向电极施加电势时,通过电解质基系统进行电子到离子的转换,从而驱动电流。当使设备和分析系统小型化时,电极上的这些电化学反应(例如水电解)通常是有问题的。金属电极的替代物可以是电化学活性导电聚合物,例如聚合物。聚(3,4-乙撑二氧噻吩)(PEDOT),当驱动电流通过水基系统时可用于减少电解。论文1描述了凝胶电泳,其中铂电极被导电聚合物PEDOT取代,而不影响分离。通过将3Dprinting与牺牲材料结合使用,可以简化微系统的制造和原型制作。牺牲模板材料可以进一步简化自底向上的更复杂形式的制造,例如凸出和悬垂的结构。我们在论文2中表明,聚乙二醇(PEG)与基于碳酸盐的增塑剂结合使用,可以很好地用作3D打印的牺牲模板材料。具有20重量%至30重量%的碳酸亚乙酯或碳酸亚丙酯的PEG2000具有有利于3D打印的性质,例如剪切稀化流变学,机械和化学稳定性以及易溶于水。

著录项

  • 作者

    Bengtsson, Katarina;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号